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Section 1
SUMMARY

The optimal tuning of multiple tuned-mass dampers for the
transient vibration damping of large space structures is
investigated. A multi-disciplinary approach is used. Structural
dynamic techniques are applied to gain physical insight into
absorber/structure interaction and to optimize specific cases.
Modern control theory and parameter optimization techniques are
applied to the general optimization problem. A design procedure
for multi-absorber multi-DOF vibration damping problems is
presented.

Classical dynamic.models are extended to investigate the
effects of absorber placement, existing structural damping, and
absorber cross-coupling on the optimal design synthesis. An
uncoupled dynamic optimization technique is developed which
allocates the absorber mass budget over multiple absorbers in
order to optimally damp the transient response.

The control design process for the general optimization
problem is formulated as a linear output feedback control problem
via the development of a feedback control canonical form. The
design variables are expressed as control gains, and the
analytical techniques of feedback control theory, both classical
and modern, are applied to absorber design. A nonlinear
parameter optimization method is developed and applied to an
output feedback formulation of the vibration damping problem.

The techniques are applied to sample micro-g and pointing
problems on the NASA dual keel space station. Damping levels in
the range of 10 - 20% are achieved with two tuned-mass dampers.
The potential damping performance gains obtained through the use
of tuned-mass dampers on lightly-damped structures merits the
further study of the hardware issues associated with these

devices.



SECTION 2
INTRODUCTION

Many proposed future large space structure designs, including
the NASA Space Station, may need to incorporate active and/or
passive damping mechanisms in order to meet pointing, slewing, or
microgravity acceleration requirements. Methods for implementing
active and passive damping have been the subject of studies by many
investigators [1-9]. Many of these studies have indicated the
merits of passive damping, either in itself or in concert with
active damping.

Incorporation of passive damping for vibration suppression in
the design of large space-structures offers many benefits. Passive
dampers require no power source, are inherently stable, and are
potentially simple and reliable. Properly designed passive damping
treatments can greatly reduce the settling time in transient
response problems and reduce the peaks of steady state response
problems.

The existence of small amounts of passive damping in an active
control system can reduce active control effort such as actuator
force, stroke, bandwidth, and system penalties such as the number
of actuators, added mass, cost, and on-board power and
microprocessing needs [5,6]. Increased performance over a larger
bandwidth can be attained. In addition to improving system
performance, the use of passive damping technology can be expected
to ease the task of control system design. Proper implementation
of passive damping in an active control system can result in a more
robust, reduced-order control design with greater stability and
reduced response to noise. Finally, passive damping devices

provide an increased safety margin for active control systems.

Passive damping can be added to a structure thrbugh a variety
of mechanisms including constrained layer treatments,

impact/friction joints, discrete dampers, and tuned-mass dampers.




Each damping treatment performs best for certain classes of damping
problems. The tuned-mass damper 1is especially well-suited for
damping large structures which are characterized by low, highly
distributed strain energy, e.g., the NASA Space Station. The NASA
IOC Space Station response to orbiter docking exhibits small loads
and only a few inches of deflection over the distance of a baseball
field. The corresponding 1low strains may not be enough to
efficiently "work" a distributed damping material, or a discrete
damping material or device placed in the load path. The advantage
of the tuned-mass damper is that it is '"tuned" to draw energy from
the main structure to a mechanism which works the damping material
or damper (Figure 2-1). Some disadvantages of the tuned mass
damper (also termed vibration absorber) are that it adds
nonstructural mass and typically provides only modest levels of
damping.

Tuned-mass dampers are used throughout industry in
applications on ships, helicopters, cars, tall buildings, and
rotating machinery. The classical two degree-of-freedom
steady-state vibration absorber solution of Timoshenko [10] and Den
Hartog [11] has been widely used to determine the optimal physical
parameters (k,c,m) for absorber designs. Previous investigators
have addressed the optimal placement and tuning of absorbers on
beams and plates [7,8,9] and the use of absorbers for combined
passive and active damping [3,4]. Some included hardware
experiments with vibration absorbers [3,4]. Much of the emphasis
has been placed on developing absorber designs for use in damping
responses to steady-state excitation.

The present work concentrates on the application and extension
of absorber design and optimization techniques to a multi-mode,
multi-dof, large space structure, namely the NASA Space Station.
The principal issue addressed is the optimal tuning of several
absorbers for the transient response of a multi-dof system,
including the effects of modal coupling, existing structural
damping, absorber placement, and absorber mass. The Space Station



ABSORBER 2-DOF REPRESENTATION
Ml = PLANT MODAL MASS

ky = PLANT MODAL STIFFNESS

Figure 2-1. Tuned-Mass Damper One-Mode, 2-DOF Representation




is subject to many transient disturbances such as docking, orbit
reboost, crew motion, and payload slewing. A notable steady-state
excitation source is the Science Research Centrifuge, which rotates
at a frequency in the bandwidth of the primary structural modes.
Because of the relatively advanced state of development of
steady-state absorber design techniques, only the transient cases
are considered in this study.

The remainder of the report is divided into four major
sections. Section 3 reviews the classical two-dof problem and
examines the two-dof transient response problem. The remainder of
the section examines dynamic techniques for optimizing multi-mode
problems with several absorbers. In Section 4, modern control
techniques are employed to optimize the physical parameters of the
absorbers. Section 5 applies both the dynamic and modern control
techniques to Space Station pointing and microgravity responses and
compares the results. A design procedure is presented in Section 6,
based on the analysis and results of Sections 3 - 5. Finally,
section 7 offers recommendations for further study.




SECTION 3
ABSORBER DYNAMIC ANALYSIS

3.1 Vibration Absorber Concept

Figure 2-1 illustrates the classical absorber problem where
the absorber mass, spring, and damper (m2, k2, and c2) are attached
to a single mode, represented by the modal mass M1, and modal
stiffness Kl1. In this representation, the stiffness of the
absorber mechanism and damping element are combined in k2, the
structural and viscous damping of the absorber are combined in c¢2,
and the frequency response of the damping element is assumed to be
uniform. In this study, the damping element 1is treated
generically, and could represent a variety of electromagnetic,
fluidic, wviscoelastic, or other types of passive devices. The
structural damping of the single mode plant will initially be
assumed to be zero.

The principle behind the vibration absorber is the tuning of
the mass, M2, and the stiffness, k2, to a frequency that couples as
much as possible with the mode to be damped. This maximizes the
relative displacement across the damper c¢2, which is effectively
amplified such that it is greater than the displacement of the
plant mass Ml. The concept can be 1likened to tuning a sprung
payload to the peak of the transient relative shock spectrum
(Figure 3-1) in order to maximize the energy transfer to the sprung
mass, as opposed to tuning it to & valley, where energy
transmission is minimized. The plant deflections, velocities, and
accelerations at M1 can be amplified by factors of 8 to 10 at M2.
For this reason, vibration absorbers are well-suited for problems
with highly distributed strain energy, as energy is drawn to the
site of the damping element or material. Once the absorber is
tuned to interact with the desired mode, the damper strength c2 is
tuned to maximize the energy dissipation.
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3.2 Classical Vibration Absorber Steady-State Solution

This discussion reviews the c¢lassical absorber solution
presented in references [10] and [11], which is the foundation for
the dynamic techniques presented in this section. The equations of
motion for the system shown in Figure 1, assuming zero structural
damping (c1=0) are:

e .

mlx1 + CoXq + (k1 + kz)x1 - c2x2 - k2x2 =F (3-1la)

m,X, + CoX, + k2x2 - c2xl - kle =0 (3-1b)

The c¢lassical steady state vibration absorber solution
minimizes the peak response (x1) of the system to sinuscidal
steady-state excitation. The approach describes the transfer
function between the response of the structure (xl) and excitation
(F) in terms of the physical parameters of the absorber. The
damping performance is optimized by equating the two peaks of the
transfer function. Adopting similar notation to that of reference
[10], the non-dimensional transfer functions (plotted in Figure
3-2) can be written as:

2
X" el v? s o - 5HY
2T ~
%o w® YR e 8) - 11 o+ {1882 YR - 0 - vt - 6912 (3-2a)
where:
= M./M
B 2'My x = Fik, w, = flgm, (3-2b)
5 = wA/wo o thru

<
]

o wlwo wA = /kle2 (3-2h)
o

c/2 M

=
It

The optimal solution is obtained through the selection of the
non~-dimensional absorber parameters: the mass ratio B, the damping
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ratio u, and the frequency ratio, § . Examination of the equation
for the maximum plant response,

(1 )max =V 2+ 18 (3-3)

yields that the performance of the absorber increases with the
weight of the sprung mass m2. Thus, the absorber mass optimization
for a single mode problem drives the sprung mass to its maximum
allowable wvalue [1]. Therefore, a suitable mass value can be
chosen a priori based on trade studies, or set at the maximum value
allowed by the mass budget.

The optimal frequency tuning for a selected mass ratio is:

6 =11 +8 (3-4)
and the optimal non-~dimensional damper setting is:

2]
. N - oQf =
i Xy /X,
OPT

P(X; /X, )2 - M (3-3a)
where
2
7 l B
M = 4[ 1+ 173 B ] N = A+ (1+4) 2+ B
1 + 8 (1 + B)Z
—_ 2
B B
P:4n[1+Jm] .. ﬁ[(2+B)Jm+l+ﬁ} (3-5b)
(1 + )2 + B) (1 + B%(2 + B) thru

(3-5e)

A series of curves representing the transfer functions for a sprung
mass ratio of B=.02 is shown in Figure 3-2. Note that for u=0, the
optimal freguency ratio (6opt)results in two modes (poles) equally
spaced about a zero nrear tne initial plant modal frequency. This
case corresponds to the classical "Undamped Vibration Absorber"
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[12] wherein practically all of the energy is transferred to the
absorber when the system is forced at the initial plant frequency.
At this point, the sprung mass has been tuned to maximize
absorber/structure interaction, and maximize the relative motion
across the damper. 1In fact, previous investigators [4] have shown
that the optimal value of § maximizes the relative motion across
the damper on average in both modes, as the relative motion in both
modes is approximately equal.

As the damping ratio u is increased from zero, the overall
magnitude of the transfer function decreases until the optimum
ratio of u=.086 (for B=.02) is reached, and the peak response of
both modes is minimized. As the value of 1 is increased further,
the absorber performance is reduced. The reason for this is that
the damper force is too high and restrains the relative motion
between the two masses. As the damper ratio is increased still
further, the two masses become "locked" together and the resulting
transfer function appears to contain only a single mode.

In the case where it 1is desired to tune the absorbers to
minimize acceleration, the transfer function can be normalized such
that:

|
2.2 2 2
! = tar” v2 v (vt - 5H4 (3-6)

2
g, 2 w0 e s - %) s {162 vE - 07 - 0ol - 682

and the same results are obtained.

The concept of an optimum damper value or loss factor bears
resemblance to other techniques such as the modal strain energy
method which are used to optimize the damping coefficient in other
types of damping devices.

3.3 Optimization of Two-DOF Model for Transient Response
This section reviews the classical techniques for optimal

tuning of the 2-DOF absorber, and details the development of
techniques for optimization of multiple passive vibration absorbers

11



for multi-DOF large space structures. The dynamics of the absorber-
structure interaction are examined, optimality criteria for the
impulse response problem are evaluated and the effects of existing
structural damping and absorber placement are investigated. A
technique for the optimization of the mass distribution among the
absorbers is developed under the assumption that coupling effects
between vibration modes are insignificant when the vibration
absorbers are attached. Finally, the quantification of coupling
effects through the absorbers is discussed.

3.3.1 Characterization of Space Station Disturbances

Because of the many different Space Station disturbances and
the continuing evolution of the IOC design in the Phase B program
(there were three significant configuration changes during the
course of this study), it was decided to model the transient
disturbances wusing initial conditions corresponding to a wunit
impulse (unit initial velocity). This simplification is justified
by the relatively short duration of the transient pulses in
comparison with the long periods of the dominant structural modes
of the Space Station (2.0 - 4.0 sec). This is evident in Figure
3-3 which shows an FFT of the NASA 500 1lb., 1 sec orbiter docking
input. An FFT of the crew motion input is shown in Figure 3-4.
Note that there are several '"notches" in the FFT, where specific
Space Station modes may not be excited. Small changes in the
design evolution of the Space Station could easily change the mix
of modes which are excited. Because the impulse input excites all
modes, some of the dependence of the study conclusions on a
specific Space Station evolutionary model is removed, and the
results can be applied to a more general class of broad-band
excitation problems. Henceforth, the remainder of the study
optimizes the absorber parameters for the case of unit impulse
input and all the results are normalized to that condition.
Because the system linear, the results c¢an be multiplied by an
impulse strength of 500 or 25, for the orbiter docking and crew
motion impulses, respectively.

12
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Figure 3-3. FFT of 500 1b, 1 Sec. Shuttle Docking Force Input.
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Figure 3-4. FFT of 5 Sec. Crew Motion Input.

13



3.3.2 Impulse Response Formulation

The general formulation for the impulse response of the system
in Figure 3-5 has not been solved in a closed form in terms of the
absorber parameters. The method discussed here follows that in in
reference [13]. The following equations are solved for the initial

conditions of unit velocity:

myXy = —ky(x; — x;) — (%3 — %;)

(3-7b)
The solution is assumed to have the form

Xy (1) = C,e™ (3-8a)
X{t) = C,e™ (3-8b)

and thus the derivatives have the form
(2(0)} = {sC}e” (3-9a)

{%(1)}) = (s°C}e
(3-9b)

Substitution of Egs. (3-8) and (3-9) into the equations of motion,
Egs. (3-7), yields a matrix equation in the unknowns Cl and C2. 1In
order for nontrivial solutions to exist, the determinant of the
matrix D must vanish:

dll dIZ][ Cl} -
[p]te) [dzn dy || G (3-10)
dyy=ms? + (c; + c)s + k, + k, dy = c5s — ky
dyy = ¢35 — ky Cdy = mys? + 3 + ky

14
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Figure 3-5. 2-DOF Absorber Model with Additional Damper to
Model Existing Structural Damping.
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The resulting fourth-order equation

4 3 | 2
Mles + [Mlc2 + M2(°1 + 02)]s + [Mlk2 + Mz(k1 + k2) + °1°2]s

+ (k,c_, +k -
1% * Xp0y)s +kk, =0 (3-11)
is analogous to the characteristic determinant of an undamped

system. Unless there is a double pole, the four roots of Eq.
(3-11) occur as two pairs of complex conjugates:

1,2 © “fw, *wy  S34 T -tw o * wyo (3-12)

The displacement solutions can be expressed in the form:
A A

= — - 2
X; o exp ( §1wnt) sin (wy,t + O + @ exp (_§2wnzt) sin (“’dzt + @) (3-13)

dl
where the amplitude and phase coefficients are determined by the
initial conditions. Note that for the unit initial velocity case,
the wvalues of Al and A2 are unity, and the amplitude coefficients
are the inverse of the damped natural frequency. A simple Fortran
algorithm is applied to solve the gquadratic and obtain the
displacement solution. The acceleration solution 1is found by
differentiating Eg. (3-13) twice. For more general absorber
analyses, the ALADIN multi-step integrator code is used, which
employs the ADAMS method for integration.

The above equations are used to generate Figure 3-6, which may
be viewed as the transient response analog to Figure 3-2. For
clarity, the impulse response envelopes (which connect the peaks of
the magnitude of the sinusoidal +transient response) of the
plant-absorber system are shown. The mass ratio B and the optimal
frequency ratio § are .02 and .98 respectively, while the damping
ratio u is varied. The discussion of the effect of varying the
damper strength in Section 3.2 also applies here. A low damper
strength does not provide sufficient damping performance while an
overly large damper strength locks the damper, and results in

16
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sub-optimal damping performance. Note that for small amounts of
modal damping, the ordinate in Figure 3-6 could also be labelled:

woxl(t) (3-14)
as an alternate way of normalizing the data.

3.3.3 Examination of Criteria for Optimization of the Transient
Response

The next sections examine the effect of different optimality
criteria on the tuning of the absorbers and the minimization of the
transient response. Prior investigations [3,4] have discussed pole
placement and minimum gquadratic cost methods for tuning absorbers
to optimize the transient response, in addition to the steady-state
solution. 1In this comparative discussion, the structural damping
of the plant (cl) is assumed to be zero.

The optimal pole placement solution maximizes the rate of
modal energy dissipation. As with the c¢lassical steady-state
solution, the mass ratio B is selected first, based on a trade
study of performance vs. available mass budget. Then, the absorber
parameters 6 and W are adjusted to locate the two plant and
absorber poles as far left as possible in the S-plane. This
maximizes the modal damping and typically decreases the system
response time. Derivations in reference [4] show that application
of the pole placement criterion results in a double pole at the
extreme left of the root locus (Figure 3-7). For comparison, the
pole locations of the steady-state solution are also shown. The
pole placement solution exhibits higher modal damping ratios for
both poles. Although it is not clearly discernible in this region
of the root locus, both poles in either the pole placement solution
or the steady state solution have the same modal damping (phase
angle in the S-plane).

The value of 6 which creates a double pole is identical to
that of the steady-state minimize solution (Eg. 3-4):

18
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6 =1/1+8 (3-15)

Substitution of this wvalue of 6opt in the characteristic equation

and solving for the pole locations and damping yields [4]:

Re(S) = =1/2VBR/(1 + B) (3-16a)

Im(s) = + 1/2V(4 - B)/(1 + B) (3-16b)

Wiope = B/L(L+ 37 (3-16c)
Figure 3-8 shows the impulse response of the two-dof system with a
5% modal mass absorber optimally tuned using the pole placement
criterion.

Another optimal design technique found in the literature is
the minimum quadratic cost solution [3,4]. Again, the first step
is to choose the desired mass ratio, B and then proceed to optimize
the other two absorber parameters, 6 and u. This criterion
minimizes a cost function which penalizes the total energy in the
system, and thereby maximizes the flow of energy out of the system.
The quadratic cost function of the system states is

0
g =1/2 [xTox dt (3-17)
0
where the matrix Q is formed such that the gquadratic terms are
equated with the system's total non-dimensional energy. Evaluation
of the above integral yields

T
0 Px0 (3-18)

J=1/2 x
where P is the solution of the Lyapunov equation for the equations
of motion given the initial state of wvector X corresponding to
unit initial velocity. Numerical search or carpet-map techniques
can be used to find the optimal values of & and u which minimize
the cost (J) for a fixed mass ratio (B). Figure 3-9 shows the
resulting impulse response for a two-dof system with a 5% modal

20
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Figure 3-8. Impulse Response of 2-DOF System with a 5% Modal Mass
Absorber Tuned Using the Pole Placement Criterionm.
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Figure 3-9. Impulse Response of 2-DOF System with a 5% Modal Mass
Absorber Tuned Using the Quadratic Cost Criterion.

% PEAK DISPLACEMENT RESPONSE
-1.00 0.7 -0.50 -0.25 0.00 0.3 0.5 0.7%
el
[€
[«
q

0.0 10.0 2.0 80.0 %.0 100.0

2.0 0.0 %0 §0.0 70.0
NORMAL 1ZED FREQUENCY WOnT

Figure 3-10. Impulse Response of 2-DOF System with a 5% Modal Mass
Absorber Tuned Using the Classical Steady-State Criterion.
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mass absorber optimally tuned by this criterion. Figure 3-10 shows
the resulting impulse response for a two-DOF system with a 5% modal
mass absorber optimally tuned using the classical steady-state
criterion.

Insight can be gained by comparing the impulse responses of
the one-mode system with absorbers tuned using the three different
optimization techniques: classical steady-state, pole placement,
and gquadratic cost. Figure 3-11 compares the envelopes of the
absolute value of the responses of Figs. 3-8, 3-9, and 3-10. Note
that the pole placement solution does not exhibit the pronounced
"beating" effect of the other two solutions. Ultimately, the
selection of the "best" transient response criterion may depend on
specific requirements. Although all of the responses are similar,
the classical steady-state solution appears to be the best. It is
rather unusual that a steady-state optimization technique should
provide the best transient response solution. This issue is
examined further in the next section.

3.3.4 Derivation of Energy Dissipated Through the Absorber

The rate of change of mechanical energy through the absorber
can be written as [14]

2

dE/dt = -c,(x, - x,) (3-19)

and is always negative because the system is passive and can only
dissipate energy. Since

Xia1 = Xy = Xq (3-20)

and the damping force is
Fq = CyXpo (3-21)

Eg. (3-19) can be rewritten as
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dE/dt = Fdxrel (3-22)

Further understanding of the results of the previous section
can be gained by looking at the energy dissipated through the
absorber during the impulse response. Figure 3-12a shows the
instantaneous power dissipated through the damper for a system
tuned using the classical steady-state optimization criterion.
Figure 3-12b shows the running integral of the function in Figure
3-12a, which is the total energy dissipated through the damper at a
given time. The envelopes of the corresponding curves for the
pole-placement solution are also shown on both plots. Comparison
of these curves reveals that the pole placement solution does
initially provides the maximum rate of energy dissipation.
However, the '"beating" effect of the classical steady-state
solution soon overtakes it. The net result is that the energy
dissipated by the absorber tuned wusing steady-state design
technique converges to the total energy in the system faster. 1In
the next section, a fourth optimality criterion for minimizing the
transient response is formulated.

3.3.5 Development of a Cost Criterion for the Impulse
Response Case

The selection of the proper cost function for use in later
optimization work on multi-dof systems and in later parameter
optimization schemes is further investigated in this section.
Further research in this area resulted in a fourth technique, based
on a minimum area criterion. A performance index is postulated
which penalizes the absolute value of the state deflection vector,

Xl(t)' This performance index is expressed in the form of the cost
function

o0
J =[|xl(t)|dt (3-23)
0
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Insight into the nature of the performance index is gained by
numerical evaluation of the cost function and examination of the
surface contours. The absolute value of the impulse response
solution (Egq. 3-13) is integrated numerically over a large time
interval such that convergence of the area to that of the infinite
interval occurs. Given the analytic form of the impulse response
solution, these trade studies do not require a great deal of
computation time. Figure 3-13 shows the surface contours (the area
under the displacement curve) for various values of 6 and u.
Although enlarged for clarity, each contour had a single minimum.
The figure shows that for a mass ratio of B=.02, the optimum values
of 6 and p are .98 and .090 respectively. The point on the graph
indicates the values for the classical steady-state criterion, .98
and .086 respectively, which are very close to the minimum of the
cost J. The points for the pole placement and quadratic cost
solutions are further away from the minimum to such an extent that
they are off the plot in Figure 3-13. This explains the result
mentioned in section 3.3.3, where the steady-state design technique
resulted in a better response than the other transient optimization
methods.

Figure 3-14 compares the root loci for the solutions using the
steady-state criterion and the minimum area criterion (u=.98 and
u=.90 respectively). The roots of the two solutions are very
close. The difference in the solutions can be examined in terms of
the modal damping. The roots of the steady-state solution have
equal modal damping. Because there 1is a slight difference in
frequency between the two poles, the amplitude of the impulse
response of the higher frequency pole is slightly lower and damps
out slightly faster. Therefore small performance gains can be
acquired by shifting the root locus to give the lower frequency
pole more damping (a slightly larger phase angle in the S-plane).
Thus, the minimum area criterion locates the poles in a position
which maximizes the modal damping and the beating effects
collectively.

Because the separation between the poles increases with
increasing values of the mass ratio B, the difference between the
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minimum area solution and the classical steady-state optimal
solution will also increase. However, the difference between the
frequencies of the two poles increases from 10% at a mass ratio of
B=.02 to a modest 20% for a mass ratio of R=.20. The error is
small enough that for all practical purposes, the designer can
adopt the classical steady-state tuning equations to design an
absorber which meets the criterion of minimizing the cost (Eq.
3-23). The notion of using the classical steady state equations to
arrive at a solution very close to the minimum of the desired cost
function J is instrumental in developing the multi-mode
optimization technique in Section 3.6. In addition, the cost
function (Eg. 3-23) which penalizes the displacement response 1is
also adopted for use in the parameter optimization procedure
described in Section 4.

In an analogous manner, the acceleration impulse response can
be minimized by implementing a minimum area under the acceleration
curve criterion. The cost function is expressed:

o0

J = ﬁxl(t)l dat (3-24)
0
Figure 3-15 shows the contours describing the area under the

acceleration response vs. . The conclusions drawn from the
previous discussion on minimizing the displacement impulse response
apply for this case as well.

3.4 Effect of Structural Damping on Absorber Optimization.

The effect of structural damping on the optimal tuning of
vibration absorbers is investigated in this section. Structural
damping is properly added to the two-dof model by using a non-zero
value for ¢l in Figure 3-15,

1 = 2Mwa8 (3-25)

where ¢ 1is the percent critical structural damping. Figure 3-16
was created in the same manner as Figure 3-13, i.e., by evaluating
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the impulse response (Eg. 3-13) and integrating it numerically to
find the area under the absolute value of the response. The plot
shows the effect of structural damping on the location of the
minimum cost. Note that as the amount of structural damping is
increased, the impulse response is improved and the contours
flatten out. The absorber M Value for minimum cost is near enough
to the classical steady-state design that it can be concluded that
small amounts of structural damping do not perturb the optimal
design synthesis.

Additional conclusions can be drawn by examination of the
effect of structural damping on absorber optimal design from the
viewpoint of the response settling time. Figure 3-17 depicts the
settling time to 20% of the original impulse response peak versus
the plant structural damping for a mass ratio B of 2%. The upper
curve shows the same response time for the system without the
absorber. The results indicate that a 2% modal mass absorber can
significantly improve the settling time of systems with less than
about 5% structural damping. Beyond the 5% structural damping
level, the structure itself is dissipating energy so well that the
absorber has little effect. Examination of the figure yields that
for a 2% modal mass absorber, the response time to 20% peak is
equivalent to that for the same plant without an absorber but with
a structural damping level of 6%. Successive curves for larger
absorber mass ratios than 2% would lie below the 2% curve as shown,
having a shorter settling time.

3.5 Tuning Laws for Multi-DOF Structures

This section examines the tuning laws for a multi-dof
structures, Analyses of an early Dual Keel configuration space
station model support the tuning laws presented in this section.
The discussion of this model is kept to a minimum as the results of
examples employing a later model are given in Section 5. Assuming
a structural damping value of 1/2%, the response ié calculated at
the upper payload boom and the lab module due to a unit x-direction
impulse input at the berthing node. A 2% modal mass absorber is
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used, tuned to the single mode of importance at the payload boom.
The ALADIN code, based on the multi-step ADAMS integration
technique, 1is wused to generate the impulse response for the
"closed-loop" (structure and absorber) case. Figure 3-18 compares
the responses at the payload boom before and after the absorber was
added. Figure 3-19 compares the spectra of the two responses in
Figure 3-18, where the FFT was obtained over the same 50-second
time pericod. Figures 3-20 and 3-21 illustrate the respective
results for the same analysis at the lab module response location.
The results indicate that, in this case, the absorber did not
couple the primary modes, and that the net solution was the linear
sum of the two-dof response corresponding to the primary mode with
an absorber on it, and the other higher frequency modes.

In the process of conducting these analyses, two simple tuning
laws were established for tuning absorbers to a single mode of a
multi-dof structure. One tuning law describes the performance of
the absorber at a particular 1location on a particular mode by
introducing the notion of an effective absorber mass ratio

%g (3-26)

Befr = @n1
where the eigenvectors are normalized such that the maximum value
of each mode is 1.0. This can be rewritten using modes normalized
to the mass matrix by

Beff = @. M (3-27)

where Ma is the mass of the absorber. Egs. (3-26, 3-27) exhibit
the sensitivity of absorber performance to location, which appears
to be generally greater than the sensitivity to different tuning
techniques. Embedded in the equation is the fact that a misplaced
absorber is also tuned incorrectly, as the mass ratio Beff is a
variable in all the classical steady-state tuning laws. Note that
these statements do not include the effect of the added mass on the
mode shape (i.e., the addition of the tuning mass alters the mode
shape so that the absorber is no longer located at a maximum).
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(b) With 2% Modal Mass Absorber

Impulse at the Docking Node.
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However, the effect is negligible for reasonably small absorber
mass ratios, and for most 1large space structure absorber
applications, the above equations will suffice.

Another tuning law describes the tuning of several absorbers
to the same mode. The question is whether there is a theoretical
performance advantage to using a single absorber or several smaller
ones? Analyses bear out that for n absorbers at n locations with
equal modal displacements, the absorbers should be tuned by the
simple relations:

mi = M/n (3-28a)
c; = C/n (3-28Db)
ki = K/n (3-28c)

Thus, two absorbers tuned according to the above relations will
have the same effect as a single absorber whose optimally tuned
parameters are M, C, and K. However, it is important to note that
if both absorbers aren't placed at equal maxima locations for the
same mode (e.g. the two tips of a free-free beam), there will be a
reduction in performance because the net Beff for that mode will be
lowered. Thus, aside from physical design constraints, it seems
desirable to use a small number of absorbers. Ultimately, the
design constraints associated with the use of certain spring and
damper materials may dictate the number of absorbers which should
be placed on a particular mode (e.g., for large n, the spring
constants ki. may become so low that it would be impossible to
manufacture them.)

3.6 Multi-Mode, Multi-Absorber Optimization
The nature of the results shown in Figs. 3-18 - 3-21 indicates
that for cases involving structures where the primary modes of

interest are uncoupled, the tuning of absorbers to each of the
primary modes can be treated independently. In addition, section
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3.3.5 shows that the classical steady state solution and the
optimal impulse response solution (Eq.3-23) yield nearly the same
result. Consequently, by adopting the classical steady-state
tuning 1laws, the absorber k and ¢ (Egs. 3-4 and 3-5) for each
primary mode can be described solely as a function of the absorber
mass ratio for that mode (Bi). This suggests that a multi-mode
optimization could be conducted by deciding how much absorber mass
should be placed on each significant mode, and then tuning each of
the absorbers using the classical steady-state criterion. Assuming
an absorber was placed on each mode, the result is essentially the
sum of n two-dof impulse responses corresponding to n modes. Since
this technique assumes that the absorber does not couple the modes,
the appropriate barometer of what constitutes coupling of the modes
by the absorber is discussed in the next section.

With this mass optimization technique in mind, it is desired
to formulate the damping performance of a particular absorber
tuned to a particular mode (by the <classical steady-state
criterion) in terms of the mass ratio, B. The cost function
(adopted in Section 3.3.5) minimizes the sum over the modes of the
impulse responses at a particular response location:

(v 0]
J ={§odes |xl(t)|dt (3-29)

Thus, one can proceed to formulate the area under the absolute
value of the impulse response curve as a function of the absorber
mass ratio, P and any other pertinent systems parameters. To
simplify the analysis, it is assumed that the area under the
impulse response for each mode adds 1linearly to the total area
under the collective modes (this assumption is justified in later
examples). The integral in Eg. (3-29) can be expanded:

Min JT = Jmode 1 ¥t Jmode 2 o Jmode n (3-30)
Given the form of the impulse response solution in Eg. (3-13),
Q:P-
x. = + 3 e t_,
1 wy e n-sinwgt (3-31)




the sum can be expanded in terms like:

00
ﬁxlldt = 0305 1/(Swy) * [....] (3-32)
0

The key to this method is that for a particular level of structural

damping, the function for the area under the absolute value of the

impulse response of a particular pole

[- -]
) = ofluwd exp (- tw t) sin wt| dt (3-33)

depends only on { for wh approximately equal to wq- Furthermore,
Eqg. (3-3) can be equated with the steady-state dynamic
magnification factor

(xl/xo) =1/(25) =V (2 + B)/B (3-34a)

MAX

to yield
§ = 1/2VB/(2 + B) (3-34b)

Given these equations, a unique expression for the displacement
area under each "2-dof mode" (the cost J) can be determined using a
linear fit on a plot of the cost J versus the reciprocal of I

of\"l\ dt ="’5i"5j\/2‘§"61" 1.2 (3-35)

And likewise for the area under the acceleration impulse response:

”"1‘ dt = 2.5 ¢ ¢, /273*_14 (3-36)
0

Figure 3-22 compares the fit of the actual area under the two-dof
displacement response curve as a function of B with Eg. (3-35).
Note that 1/2% structural damping is assumed. Also shown is the
same fit for the acceleration case. The result is not surprising
when one considers that all the absorber parameters and the
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expression for modal damping (Eq. 3-34 above) are functions of only
B.

Given these unique functions, a global optimization over n
primary modes can be conducted under the constraint of the total
absorber mass available:

Min JT = J(Bl)mode 1 + J”‘3’2)mode 2 .. J(E’n)mode n (3-37)

subject to constraint,

MaT = BlMl + BZMZ + ... BnMn (3-38)

Invoking constrained multivariate optimization techniques, n
equations in n unknowns can be solved for Bi by finding the zeros
the matrix equation:

aJT aJT aMATlaﬁi
ag, - @p, @M, Tag, =0(i=2,...n) (3-39)
T
M (3-40)
AL T BM + BM 4 B M) =0

T
Software routines capable of finding the zeros of matrix equations
can be found in IMSL, SLATEC, and other standard math 1libraries.
For cases involving just two primary modes, a graphical technique
can be used to examine the contours of the cost function (see
Figures 3-13, 3-16). Once the mass ratio for each mode is known,
the absorber ki and cy for each mode can be determined based on the
classical steady-state tuning laws. The technique is referred to
as the "uncoupled dynamic optimization". It is applied to coupled
and uncoupled Space Station examples in Section 5, and the results
are compared with nonlinear techniques developed in Section 4.
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3.7 Coupling of Impulse Response by Absorbers in Multi-DOF Space
Structures.

The addition of absorbers can introduce coupling between the
otherwise orthogonal modes of a large space structure in two ways.
The first is through spatial coupling, whereby the location of an
absorber at the maxima of one mode also affects another mode. The
effect is especially significant if the absorber is located at a
location which is the maxima of both modes. The spatial coupling
effect can be described in terms of an effective mass ratio:

_ 2
Bege = Pp Ma/Mn (3-41)

where n is the index for the mode without an absorber which couples
to another mode with an absorber of mass Ma'

The absorbers also introduce coupling through closely spaced
modal frequencies. The tendency for frequency coupling increases
with increasing values of the cross-mass ratio, Beff' Figure 3-23
shows the results of a parametric study that investigates the
coupling effect (by measure of the cost J) of an absorber that is
tuned to another mode but possibly coupled to the mode of interest.
The curves were generated by using the two-dof system (Figure 2-1),
parametrically mistuning the value of the plant frequency, and
evaluating the area under the curve. Note that no structural
damping was assumed in the generation of this curve. The plot is
interpreted using the following steps: 1) the value of Beff is
determined based upon Eq (3-41), 2) the ratio of the frequency of
the mode of interest to that of the mode with an absorber attached
is selected on the abcissa, and 3) the corresponding area under the
response 1is found on the ordinate. The plot is cut off at a
maximum area of 126.0, which represents the area corresponding to
the impulse response of the plant with 1/2% structural damping.
Thus, if the point cannot be found on the graph which matches both
w/wl and Beff' there is no coupling. Modes with points falling
within the interior of the parabola are coupled, and the effect of

44




INCREASING COUPLING

(_.__-_-

cost J

M_ Dapar

2

B etf A

k

2

- 02M. WHERE O'MO® = |

VARY k, IN OPTIMALLY TUNED SYSTEM

S
o
g_
° Beff=-02
&
o
g-
o
e
o
S-
(=]
g
o
c
T T T T T i T j T 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
W/ W
1
Figure 3-23. Characterization of Net Effect of Absorber Spatial

and Frequency Coupling.

45



the coupling on damping the mode of interest can be ascertained by
noting the magnitude of the area under the response (cost).

Figure 3-24 shows Figure 3-23 replotted on a log base 10
scale. Several trends and conclusions can be drawn from this
figure. First, the larger the effective mass ratio, Beff' the
greater the tendency there is to couple the damping effect of an
absorber tuned to one mode with another. Second, the '"parabolas"
are asymmetric, indicating that the mode of interest couples more
strongly with a lower frequency mode that is damped by an absorber
than a higher frequency one. This trait is confirmed by other
investigators who showed that to damp the steady-state response of
two modes, the absorber should first be tuned to the lower mode and
then the damper value adjusted to optimally damp both modes.

Figure 3-24 also can be interpreted from the point of view of
"mistuning" the absorber. The figure shows that the sensitivity of
the absorber performance to tuning errors decreases as the absorber
mass ratio increases. Additionally, the sensitivity to tuning
errors is greater if the absorber is mistuned above the optimal
frequency as opposed to below.

Typically, the designer would attempt to size and locate the
absorbers in such a way that the coupling between the modes was
increased, thereby increasing the damping performance of a single
absorber over many modes. However, in certain situations, it is
possible that the maximization of coupling could result in reduced
damping performance. Therefore, a fully-coupled analysis |is
necessary to analyze absorber locations for problems involving
large amounts of coupling. The methods described in this section
apply to uncoupled or lightly coupled modes, but can also be used
to provide location and mass distribution input for the fully
coupled parameter optimization. The application of modern control
theory and parameter optimization techniques to the vibration
absorber problem takes into account coupling effects, and 1is
discussed in Section 4. Section 5 compares the results of the
dynamics and controls techniques applied to two Space Station
vibration damping cases, one uncoupled and the other highly
coupled.
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SECTION 4
CONTROL THEORETIC APPROACH TO ABSORBER DESIGN

This section presents a control theoretic approach to
vibration absorber design. The design process is formulated as a
linear output feedback control problem wvia the development of a
feedback control canonical form. The design variables are expressed
as control gains, and the analytical technigques of feedback control
theory, both classical and modern, are applied to absorber design.
Although active control algorithms are used in the design process,
the final design remains passive; i.e., we are not designing active
systems. The constrained nature of the feedback gain matrix makes
the application of established output feedback solution methods
difficult; therefore, a nonlinear parameter optimization method is
developed and applied to the output feedback formulation of the
vibration damping problem. The optimization algorithm is applied
to the simple 2-DOF system for comparison with known solutions to
the 2-DOF problem.

4.1 Conceptual Development

The motivation for a new approach to absorber design stems
from the complexity of the Large Space Structure (LSS) vibration
damping problem. These structures have many closely spaced
vibration modes and many candidate locations for placement of
vibration absorbers. This multi-input problem (many different
vibration sources) and multi-output problem (many different
absorber locations), coupled with large numbers of vibration modes
requiring damping, leads to a complex regime of damping problems
that require new approaches to absorber design.

The multi-input/multi-output (MIMO) nature of these problems
lends itself to the analytical methods of multivariable feedback
control theory. These feedback methods are well developed and an
extensive body of knowledge and engineering expefience exists
concerning the effects of feedback gains on system performance,

damping levels, and £frequency response. The expression of the
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absorber design process in feedback control format permits use of
these analytical technigques and provides convenient methods to
evaluate system performance in terms of accepted control system
terms and concepts. Although some of these concepts may be
unfamiliar to the structural dynamics community, their wuse in
absorber design allows development of design procedures
specifically tailored for LSS vibration absorbers that must cope
with the new regime of complexity imposed by 1large space
structures.

The key concepts that allow application of feedback control
techniques to absorber design are the placement of the design
problem in a 1linear format, and the recasting of the combined
structure-absorber dynamic equations in a feedback canonical form.
This linear form is useful because most of the control-theoretic
results apply to linear systems and the linear format greatly
simplifies analysis and design. The feedback canonical form allows
expression of the absorber parameters as controller gains and
provides a convenient method for the evaluation of absorber
performance. This formulation also provides needed visibility into
the absorber design process.

4.1.1 Linear Format

Consider the development of a linear formulation. It is well
known that absorber design becomes highly nonlinear when the
calculation of all design parameters (mass, damper constant, spring
constant and location) are performed under one optimization process
[1-4]. However the design process can be performed under a linear
regime if recent research results are applied such that absorber
masses and absorber locations are determined outside the primary
design process. The logic supporting this procedure is as follows:

Absorber Mass: The rationale for determination of absorber

mass outside the main optimization process is based on research
results that show that as the optimization proceeds, the optimum
value of absorber mass tends to large values that uniformly

49



approach 50% of the main system mass [2]. Thus unconstrained
optimization procedures tend to large mass values that cannot be
applied to LSS design. Typically the LSS requires that non
structural mass be restricted to a small percentage of the total
system mass. Because of the wuniform nature of absorber mass
variation as it approaches the optimum, imposition of mass
constraints generally results in the optimization procedure riding
the constraint boundaries in an attempt to drive the absorber mass
toward higher values. The smoothness of the optimization curve and
its known tendencies toward large mass values provide the rationale
for setting the absorber mass at its maximum allowable value. The
problem of optimum mass distribution between two or more absorbers
is considered in Section 3.6.

Absorber Placement: The problem of absorber placement can also

be addressed outside the main optimization process: One simply
determines the troublesome modes that require damping and locates
absorbers at positions of maximum modal gain. This procedure is
based on knowledge that absorber must experience velocity in order
to function properly. Places of maximum velocity occur at station
points where the eigenvector has maximum values. From a control
perspective, one locates the absorbers at points of maximum modal
gain and thus assures maximum excitation of the absorber.

The removal of absorber mass and location from the primary
design process leaves the parameters of damper value and spring
constant to be determined. These parameters can be determined by
feedback control algorithms.

4.1.2 Control Canonical Form

The control canonical form for absorber design is developed in
a three step process. First the dynamic equations for a two degree
of freedom absorber system are formulated in both scalar and matrix
form. Second these equations are placed in block diagram form and
the variable parameters are isolated as feedback gain matrices.

And finally, block diagram reduction is employed to develop the
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absorber canonical form. The development of this form rests on
judicious handling of the coupling terms between the dynamic
equations of the absorber and the damped structure, and the
successful resolution of problems that result from single gain
elements appearing in multiple feedback loops.

Step 1. Equation Formulation: The dynamic equations for the

absorber and the system may be formulated as shown in Figure 4-1.
These equations take the form of coupled second-order differential
equations. System I denotes the main system, or the structure to be
damped. System II denotes the absorber dynamics for the coupled
equations. The main system variables and parameters are denoted by
the subscripts 1, and the absorber variables and parameters by the
subscripts 2. The symbol, P, represents an external force applied
to the system. .

Additional insight into the nature of the problem is gained if
the combined system dynamics are expressed in matrix form as shown
in Figure 4-1. The two second-order differential equations of
Systems I and II are expressed as four first-order egquations.
States 1 and 2 are associated with System I, and states 3 and 4 are

associated with System II, the absorber. This decomposition
emphasizes the coupling between the two systems: System II, the
absorber, drives System I wvia the Y2 vector. The isolation and

careful handling of these coupling vectors and their corresponding
matrices is a key concept for the development of the control
canonical form. The entries of each coupling matrix involve k2 and
¢, multiplied by an appropriate scalar. The significance of this
symmetry becomes more pronounced as the development proceeds.

Step 2. Block Diagram Formulation: The system dynamics can

be represented in block diagram form as shown in Figure 4-2. The
blocks that contain (1/s) represent integrators. Four such
integrators are present, one for each of the first-order dynamic
equations. The subscripts are associated with parameters and
variables as defined previously.

Examination of the block diagram yields several important
properties of the damper problem. First it is observed that each
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spring constant, k2, is associated with a deflection and each
damper constant, Cos is associated with a velocity. This structure
suggests a well known feedback form (k2 + sc2) where, s, represents
differentiation. This form is representative of output feedback
systems having a position loop and a velocity loop.

Additional examination of block diagram signal paths and
connection matrices reveals a significant property: All connection

elements and feedback elements, with the exception of Kk, are

identical. The absorber parameters, Cy and k2’ form identical
feedback structures for both System I and System II. Similarly the
feed-forward coupling terms associated with each system are
identical. Although these parameters seem to be independent and
appear in different system loops, in actuality they are the same
parameter appearing simultaneously. This implies that parametric
adjustment in one loop yields simultaneous adjustment in every loop
containing that parameter.

The multipath gain characteristics are emphasized by the
generalized block diagram of Figure 4-3. This form demonstrates
the multipath nature of the control problem. The control design
gain, K, appears in two inner feedback 1loops, and forms the
coupling matrix between the two systems. The outer feedback 1loop
is positive in nature. Positive feedback 1loops are generally
avoided in practice because of reduced stability margins that can
cause system-wide instability. However, stability constraints are
not a concern in this design process, for the entire system is
guaranteed to remain stable as the passive nature of the absorber
guarantees stability. The system dynamic equations are inherently
stable for all physically realizable parameter values.

Examination of Figure 4-3, with attention to the outer 1loop,
shows that the gain appears in both the feed forward path and the
feedback path. This implies that the gain will appear 1in the
problem formulation as a squared quantity; thus, potential
nonlinearity, has reentered the formulation. However, as shown in
Step 3, the positive outer loop when combined with Mason's block
diagram reduction techniques removes the nonlinearity.
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Step 3. Figenvalue Canonical Form Development: The formation
of a canonical form that incorporates absorber effects on system

eigenvalues requires determination of the system characteristic
equation. This is accomplished by block diagram reduction as shown
in Figure 4-4. Pl and P, represent the transfer functions for the
structure and absorber respectively with the minor feedback loop
incorporated into the expression for the structure. The transfer
functions from disturbance input to structural deflection (Xl/P),
and disturbance input to absorber deflecton (XZ/P) are developed as
shown. The intermediate steps involving P1 and P2 illustrate the
effects of positive feedback on the outer loop. Substitution of
the algebraic relations for P1 and P2 in the expressions for the
transfer functions and simplifying vyields the desired transfer
functions in terms of Gl’ and G2. The denominator polynomial of
either transfer function is the characteristic equation and
contains the required information on system eigenvalues. This
expression is linear in the gain K and may be placed in the block
diagram form shown in Figure 4-5.

This system has the structure of a simple output feedback
control system entailing a single feedback loop, and may be used to
synthesize system gains corresponding to absorber parameters. This
feedback formulation provides insight to the ability of the
absorber to affect system eigenvalues. It should be emphasized
that G2, the transfer function associated with absorber, has the
functional form 1/s2 and corresponds to the dynamics of the
absorber mass without the spring and damper attached. The
remaining dynamic elements of the absorber are associated with the
feedback loop. The transfer function, Gl' is associated with the
structure and has the functional form 1/(s2 + woz) and corresponds
to a structural vibration mode. The total system may be viewed as
a rigid body mode and a vibration mode that are coupled by an
external feedback loop, K.

Absorber Gain Constraints: One additional item requires

discussion before proceeding to the control design process; namely,
the absorber gain matrix is highly constrained, contains many zero
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entries, and repeated elements. This matrix structure leads to a
highly constrained output feedback control problem that requires
the generalization of feedback control techniques before they can
be applied to absorber design. Section 4.5 discusses the problem
in detail.

In summary, the simultaneous appearance of system gain
elements in multiple loops generates a multipath control problem
that severely limits design freedom. This limitation occurs
because individual 1loops cannot be adjusted to meet independent
performance specifications. With reference to Figure 4-3, a gain
variation in one loop implies simultaneous variation in all loops.
The multipath condition exists because the absorber parameters are
bidirectional elements that transmit forces in two directions. The
absorber parameters operate on the difference of two variables in
the system dynamic equafions: in the control domain, this implies
multiple gain paths. This multiple gain path condition is removed
from the formulation by block diagram reduction techniques during
development of the root-canonical form thereby rendering the
absorber design problem more amenable to control techniques.

4.1.3 Absorber Root Locus

The pole-zero constellation and associated root-locus plot are
shown in Figure 4-6. The poles are indicated by x's and the zeros
are indicated by o's. The pole frequency at Yy corresponds to the
vibration mode of the structure with no absorber attached. A
double pole occurs at the origin and corresponds to the absorber
mass dynamics. The zeros occur as a result of absorber action and
are located at + jwo/(l + B) where B = Ml/MZ is the ratio of the
absorber mass to structural mass. A zero also occurs on the real
axis at -K2/C2 where K2 is the absorber spring constant and C2 is
the damper value. Zero placement strongly affects the locus
behavior, because the closed-loop system poles tend to migrate
toward the open-loop system zeros.
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The root locus exhibits the general properties shown wherein
the poles at the origin move toward zeros on the imaginary axis
located at wo/(1+B), and the poles on the imaginary axis move
toward the real axis. This pattern makes it difficult for one
absorber to provide damping for more than one mode. One way to
alleviate this situation would be to make the absorber active such
that the zero on the real axis would become a complex pair that had
an imaginary part approximately equal to the frequency of the modal
cluster that required damping. The presence of the complex zero
would draw modes of the cluster toward it and thus provide damping.

4.2 Root-Locus Investigation of Absorber Design

This section employs the root-locus to analyze the absorber
design process. We study the classical min-max solutions of
Timoshenko [10] and Den Hartog ([11], and the pole placement
procedures employed by Crawley [3-4]. The effect of zero location
(damper strength to spring constant ratio) on system performance is
also investigated. These studies provide new insight into absorber
design.

Illustrative Example: The design example consists of the two

degree of freedom system shown in Figure 4-7. The main system
parameters are delineated by the subscript, '"s", and the absorber
parameters are delineated by the subscript, "A". The structural
parameters (main system) have been normalized to provide a
structural frequency of one radian/sec.

The canonical system that is analyzed with root 1locus
techniques has the structure shown in Figure 4-7. In order to
perform a standard gain variation study, the absorber parameters
are lumped on the summer output and form the block indicated by
(1 + (CA/kA)S]' The spring constraint, kA’ appears as a variable
gain in a separate block. It is this gain that functions as the
variable parameter for our root-locus studies. This procedure is

equivalent to holding the ratio of CA/kA constant; i.e., fixed zero
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location, and increasing both the spring constant and damper
strength by the identical multiplicative factors.

From a parameter optimization perspective} this root-locus
procedure is equivalent to searching the contours of a hypothetical

performance criterion along fixed rays. Figure 4-8 illustrates
this concept in which the fixed rays emanating from the Cp - kA
origin represent 1lines of search. These straight lines are

equivalent to fixed zero locations on the root locus.

Figure 4-9 depicts the root 1locus for the illustrative
example. The form of the locus corresponds to the general pattern
previously shown in Figure 4-6. As the locus is symmetric about
the real axis, the locus of the lower half-plane is a mirror image
of that of the upper half-plane; accordingly, only the upper
half-plane is shown. The area enclosed by the box contains the
locus that corresponds to the absorber mass and emanates from the
double pole at the origin. This region corresponds to large
absorber/system interaction and 1is of design interest. The
remaining portion of the locus leads to high gain designs that
ultimately result in absorber lock-up.

Figure 4-10 depicts the expanded region of locus behavior and
presents the results of a parametric study on zero location.
Recall that zero location is adjusted by variation of the spring
constant and relative damper strength. The =zero is varied from
-20.0 to -2.90 along the real axis. These locations are chosen to
bracket the mini-max and pole-placement solutions.

The parametric study provides a general overview of the locus
behavior. Each plot has two branches. The upper Dbranch
corresponds to the structural mode and proceeds from the imaginary
axis with an initial value of 1.0 radian/sec. The lower branch
corresponds to the absorber and proceeds from the imaginary axis
with an initial value of 0.0 radians/sec. The direction of travel
for each branch as the gain increases is as shown. Both roots move
into the left half-plane as the gain increases, thus providing
increased damping. However an additional increase in gain causes
one of the branches to return to imaginary axis thereby reducing
damping. The placement of the zero (kA/CA ratio) determines which
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branch, that associated with structure or that associated with the
absorber, returns to the imaginary axis. The 2zero position
strongly influences the left half-plane behavior of each branch.
This determines the amount of interaction between the two modes and
the ultimate achievable damping for each mode. A good design
requires interaction between the two modes such that energy is
transferred to the absorber and dissipated across the damping
element; i.e., each mode receives a moderate amount of damping.
Different optimality criteria achieve these conditions in slightly
different manners.

We next consider each plot of Figure 4-10 in detail and
proceed clockwise through the charts. Recall that movement of the
zero toward the imaginary axis corresponds to increasing the damper
strength relative to the spring constraint.

First consider the chart depicting the minimax solution which
has a zero at -5.60. The circles indicate roots obtained by
application of the classical turning laws [10, 11]. This solution
provides maximum interaction between the two modes and leads to the
beating phenomenon shown in Figure 4-11. The effect of the zero at
this point is to strongly draw the loci into the left-hand plane
and thereby produce increased damping. We note that the loci
approach each other, but do not intersect.

Next consider the pole placement solution which has a zero at
-3.5. Movement of the zero toward the imaginary axis has caused
the loci to move further into the left-hand plane and to coalesce.
The optimal solution is indicated by the circle enclosing the
double pole as shown. The corresponding time response is shown in
Figure 4-11. When compared with the pole placement response, we
note the absence of the beating phenomenon; i.e., the response
decays uniformly to zero.

The next plot has the zero placed at -2.90. A zero this close
to the imaginary axis influences that branch of the 1locus
associated with the absorber mass pulling it strongly into the
left-hand plane. However, the influence on the structural mode is
diminished. The root associated with this mode merely loops back
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onto itself returning to the imaginary axis. Little interaction
occurs between the two modes and performance decreases.

The final plot has the zero placed an extreme distance from
the imaginary axis at -20.0; i.e., we have increased the spring
constant relative to the damper strength. The zero at this point
has reduced influence over the 1locus branches. Damping and
interaction are reduced.

In summary, the root locus is a convenient tool for relating
transient response to structural parameters. Movement of the
system zero corresponds to adjustment of the spring constant/damper
strength ratio. The modal beating effect obtained from classical
tuning laws can be analyzed in terms of locus interaction. The
method is best applied to two degree of freedom systems that can be
analyzed as single input single output (SISO) systems. Subsequent
sections deal with the multi-degree of freedom/multi-absorber
problem.

4.3 Control Canonical Form for a Finite Element Model

The control canonical form presented in Section 4.1 is
developed for a finite element structural model, in preparation for
the application of modern control techniques to the multi-DOF,
multi-absorber control problem. A simple 2-DOF mass-spring system
is analyzed first with an approach which is more direct than that
of Section 4.1. The new approach develops the nomenclature for the
generalization to the finite element model.

4.3.1 Analysis of the Simple Mass-Spring System
The mass-spring system is shown in Fig. 4-12. The mass, Ms’

A kA’ and Ca
define the absorber. The equations of motion for the system are

and spring constant, ks’ define the structure, and M

also included in Fig. 4-12.

The control canonical form is obtained by considering the
negative of the absorber relative displacement, é§ , as the output
variable, and the structure inertial displacement and absorber
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negative inertial displacement, x and £ , as the state variables.
The transformed equations are shown in Fig. 4-12. Note that the
transformed equations have essentially decoupled the structure and
absorber systems. The control force, applied to both systems, is a
function of the relative displacement, -6 , and velocity, -5 .

The control canonical form block diagram can be written
immediately from the transformed equations in Fig. 4-12, as shown
in Fig. 4-13. The input to the structure-absorber system is the
absorber control force, u, and the output is the negative of the
absorber relative displacement, 6 .

4.3.2 Generalization to a Multi-DOF Structure.

The control canonical form for a simple mass-spring system is
now extended to the describe the finite element model of a
structure with multiple absorbers, Fig. 4-14.

The finite element model (FEM) for a large space structure
(LSS) is described by

MX+Cx+Kx-=R (4-1)

where M, C, and K are the mass, damping, and stiffness matrices,
respectively, R is an external force vector, and x is the vector
describing each of the 6 degrees of freedom for all the FEM nodes
of the structure.

Eq. (4-1) is transformed to an uncoupled set of differential
equations in terms of the natural modes of vibration of the LSS.
The transformation is accomplished with a modal transformation
matrix ¥ , such that

x= Ygqg (4-2a)

~

The uncoupled equations of motion become

d+202§+92qg= ¥YIR (4-2b)
where,

Q2 =\ w;? Kk (4-2c)

202 =% 2 w; ¢; % (4-2d)
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The o; are the natural frequencies of the LSS, and the Qi are the
modal damping ratios. The columns of ¥ are the eigenvectors of
Eq. (4-1).

The objective of the canonical form generalization is the
attachment of the absorber dynamics to the FEM of the structure,
and expression of the combined system in a form which is identical
to that of the spring-mass system, Fig. 4-13. To simplify the
formulation, each absorber is restricted to motion along a single
degree of freedom, be it a linear or angular displacement. The
absorber control force is expressed as a linear function of
relative displacement and velocity, and it is added as an external
force to the right hand side of Egs. (4-1) and (4-2b).

The absorbers are placed at nodes of the structure such that
absorber motion is parallel to one of the 6 degrees of freedom at a
node. The structure displacement corresponding to each absorber is
described by

X, =‘g.T q, i=1, 2, 3,..., L (4-3)

where the ¢iT are rows of ¥ corresponding to the specific X
A consise expression for the absorber 1locations, X5 in the
state vector, X, 1is obtained by rearrangement of the modal

transformation matrix such that

flT
i v
v, i
w - | __XL. N A (4-4a)
o T
~L+l y
- . R -l
T
| O

Then,
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T — i - T t T —

xm = Xy eee Xp o} Xpiq eee Xy 1 =1 Xa© 1 g ] (4-4Db)
where,

2= Y g (4-4c)

Likewise, the force on the structure by the absorbers is
partitioned so that

£=1f (4-5)

The addition of the absorber force to the structure dynamics, Egs.
(4-2), yields

&+2QZ&+92g=WTg+[‘PAT}‘PRT]l-g (4-6)
I
— T T
= Y- R + ‘PA £a
The dynamics of the absorbers are expressed as
Myg = Ea (4-7)
where MA = f mii, i=1,..., L is the matrix of absorber masses,

and ¢ is the vector of absorber inertial displacements. The sign

~

convention for ¢ is as described in Section 4.3.1.

The absorber force is expressed as a linear function of the

relative absorber displacement and velocity. The relative
displacement for a specific absorber is given by -( fi + X5 ), Fig.
4-14,, and the absorber force is given by
* [ ]
£ag Tk C & +x0) -y (& +x) (4-8a)

The force vector for all the absorbers is expressed with the aid of
Eg. (4-4b),

Ea=- 0K, 1yl | £+ Yg (4-8b)
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where KA = ¥ ki Y and CA =¥ cy i, i=1,2,...,L.
The structure-absorber equations of motion become

grozg+arg= YR+ ¥y (4-9a)
£ =m, "ty (4-9b)
u=-[K, 1 C 1y (4-9c)
. ]
L= Yo 1 01T 1o g (4-94)
""" [ A -
0 I U R q
g
g

For control analysis, Egds. (4-9) are converted to first order form
with the definition,

r b
3
q
n = === (4-10)
3
£
L o
Egs. (4-9) become
i N i 7 B 7
0 I 0 0 0 0
. |-e* -2z o0 0 v " pT
Q= nt u + R (4-1lla)
0 0 0 I 0 0
-1
i 0 0 0 0 | i M, | i o_
= Apnp + Bu +ER
¥, 0 I 0
Yy = n=cnq (4-11b)
0 ¥, 0 IJ
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u=-[K, | C

g

A (4-11c)

The LSS-absorber system is now expressed in the generalized
output feedback canonical form by Egs. (4-11). A control block
diagram for Egs. (4-11) is presented in Fig 4-15.

4.4 Optimal Output Feedback Formulation

The LSS-absorber system is described by Egs. (4-11), where the
absorber spring and damper constants appear as the output feedback
gains, KA and CA. The feedback gain matrix,

F=[K, | C

A | (4-12)

a
must be chosen so that the response of the LSS to external
disturbances is optimized in some sense.

The goal of the optimization problem is to minimize some
perfomance index which penalizes the response - displacement,
velocity, or acceleration. The most common performance index
applied in linear optimal control theory is the linear quadratic
regulator cost functional,

J = J ( Q? Qn + g? Ru ) dt (4-13)
0
The positive semi-definite matrix Q and positive definite matrix R
describe the weighting of the state and control variables in the
performance index.

The output feedback form of the performance index is obtained

with substitution of Egs. (4-11c) and (4-12) for u into Eq. (4-13):

J =Jo ( nT [ o + cTFTRFC ] n ) dt (4-14)

The optimal output feedback problem to be solved is
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minimize J with respect to F, subject to:

13

=An+Buy (4-15a)

g

-FC n (4-15b)

where the matrices A, B and C are defined in Egs. (4-11).

4.5 Modern Control Techniques

The linear quadratic regulator problem has been studied
extensively, and an exact solution is available for the complete
state feedback problem [15]. A sub-optimal solution is also
available for the output feedback regulator problem [16].

The performance index, Egq. (4-14), can be expressed in terms
of an initial condition vector, and the Lyapunov matrix, P, which
is the solution of the Lyapunov equation,

(A-BFC)T P + P (A-BFC) + ( Q + CYFYRFC ) = 0 (4-16)
Then,
J=n7Tpn (4-17)
~0 ~Q

where JUS is the vector of initial conditions. Therefore the
performance index, J is an explicit function of the initial state
vector.

To eliminate explicit initial condition dependence, J can be
minimized over the set of all possible initial conditions. The
performance index becomes the expectation of the cost over a
uniformly distributed set of initial conditions [17],

J=E{n Pn_ }Y=¢tr [P ] (4-18)
where tr[] denotes the trace of a matrix. Eqg. (4-18) represents an
average cost over a set of uniformly distributed initial conditions

in state space [17], and provides an upper bound for the
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performance cost resulting from any specific initial condition
vector.

Solution techniques for the optimal output feedback problem
with Eg. (4-18) as the performance index have been examined in the
literature [16 - 19]. A sub-optimal solution is presented by Kosut
[16], which minimizes the control difference between an optimal
state feedback controller, and the equivalent output feedback
controller. However, when the observation matrix, C, is not of full
rank, as is often the case with a reduced order finite element
model, then the solution for the output feedback gain matrix is not
unique. In fact, a parametric family of gain matrices is possible
[20].

Further complications arise from the constrained structure of
the gain matrix, F:

= |
F=1K, | Cp ]
] | .
k1 0 eee 0 ! Cq 0 e 0
{
0 k eee 0 L0 c, e+ 0
_ X 2 I 2 . (4-19)
L] * = L ] .
[ ] [ ] % e L]
e o » l ® o 0
] 0 0 kL | 0 0 L ]

In general, an optimal output feedback solution such as Kosut's
will return a fully populated matrix. Physically, this feedback
structure implies that there exists a set of actuators, and a set
of sensors such that each actuator obtains information from all the
sensors. However, the LSS-absorber problem is similar to a 1local
feedback control problem, in which each actuator only obtains
information from a colocated sensor. The LSS problem differs from
the local feedback control problem by the fact that the actuator
force is applied to both the sensor location on the structure, and
the corresponding absorber mass. This leads to the coupled control
problem previously discussed in Sec. 4.1.
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4.6 Parameter Optimization

The optimal output feedback control problem stated by Egs.
(4-15),(4-16), and (4-18) can be approached with parameter
optimization techniques. Numerical optimization algorithms, such as
steepest descent or dquasi-Newton, vary the elements of the gain
matrix, F, until a minimum o©f the performance index is reached.
Only the non-zero elements of F are varied, therefore the result of
the optimization is the optimal constrained feedback gain matrix as
given in Eq. (4-19).

4.6.1 Statement of the Parameter Optimization Problem

The parameter optimization problem is obtained from Egs.
(4-15), (4~16), and (4-18):

min{ J } = min { tr[ P(F) ] }
F

subject to:
T (4-20)
AO P+ P Ao + Q0 =20

AO = A - BFC

Note that the explicit weight, R, on the control vector is set to
zero, since the control effort is implicitly constrained by the
absorber dynamics which are included in the closed loop plant
matrix, A, The implicit constraint on the control effort is a
result of the limitations placed on the control force by the finite
absorber mass and the absorber dynamics.

The gradient of J with respect to components of F for the
problem stated by Egs. (4-20) can be computed through the solution

of an additional Lyapunov equation for AOT (17,211,
A L+LAT+71=0. (4-21)
o o
VJ=-2 col{ BlpLcT 3 (4-22)
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where col{} is a column vector composed of all the elements of the
gradient matrix which correspond to non-zero elements of F (e.g.,
Eq. 4-19). Likewise,

v = col{ F } (4-23)

is a vector composed of the spring and damper constants for all the
absorbers.

4.6.2 Quasi~Newton Method Description

A quasi-Newton method is chosen to perform the optimization.
The guasi-Newton method builds an approximate local quadratic model
of the objective function, and proceeds to find the minimum of the
model. The method is applicable when an analytic or semi-analytic
gradient is available for the objective function, and offers faster
convergence than a steepest descent method.

As with most Newton-type optimization methods, the search for
the minimum is performed in two steps: (1) choose a search
direction, and (2) find the minimum of the function along the
search direction. The choice of search direction depends on the
method used. For a quasi-Newton method, the search direction is
obtained from second derivative information. Consider a
hypothetical function W with gradient DW and Hessian (second
derivative matrix) D2W. Then, a local quadratic approximation for W
is

- T _
W(x) = W(g,) + DW(x ) &g + 1/2 83~ D2W(x,) &% (4-24)

A necessary condition for a minimum of W is DW(x)=0. The 6&x which
satisfies this condition is

T

62T = -[ DaW(x,) 171

DW (%) (4-25)

where 68X is the new search direction.
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Once the search direction 1is computed, a univariate
minimization, often called a line search, is performed to find a
minimum of the objective function along the search direction.

The Hessian is approximated from previous function values and
gradients. At the first iteration the Hessian is the identity
matrix. At subsequent iterations, the Hessian is updated according
to the formula given in Ref. [21]. When the Hessian update becomes
ill-conditioned a restart is performed, and the Hessian is reset to
the identity matrix.

A simplified flow diagram for the gquasi-Newton algorithm is
presented in Fig. 4-16.

4.6.3 Convergence Criteria

The convergence criteria for the optimization algorithm
regulate the accuracy of the solution. The necessary condition for
a minimum is

VvJ =0 (4-26)

The imposition of this condition alone, however, may place
unreasonable convergence requirements on the algorithm. More
practical criteria are placed on the change of the performance
index, and the spring and damper constants, over consecutive
iterations. When the relative difference of the values over an
iteration is smaller than specified tolerances, the optimization is
stopped. Thus the algorithm is prevented from attempting to satisfy
Eg. (4-26) to some tolerance, when the change in spring and damper
constants is insignificant for consecutive iterations.
The implemented convergence criteria are

(1) || %] < ey
(2) I¥ee1 ~ 5l 7l < =y

(3) 19y4q = Tl 7 1ol < eq

where €,/ €5, €5 are specified tolerances.
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4.6.4 Example Problem

The parameter optimization algorithm is applied to the simple
mass-spring system of Fig. 4-12. The system parameters are
MS =1 1b., ks = 1 1b/in, MA = 0.02 1b.

The system equations are

0 1 0 0 0
IR B S-S F S I I (4-27a)
0 0 0 0 50
[ k_ | ] [ 1 0 1 0 (4-27b)
4 = - i C -
a a l0101} n
with cost weighting matrix,
1000
_ 0000
Q= 0000 (4-27¢)
0000

The structural displacement alone 1is ©penalized 1in the cost
weighting matrix.

A 3-dimensional plot of J vs. ka and C4 is presented in Fig.
4-17. The optimization algorithm consistently converges to the
values

0.975 1b/in
0.139 1b-sec/in

for various initial estimates of ka and Cye

The algorithm solution is compared to the steady state minimax
and pole placement solutions (Sec. 3.2) in Fig. 4-18, along with
the corresponding transient responses to an impulse. The steady
state minimax response exhibits a smaller amplitude for the second

beat (between 40 and 80 seconds) than the parameter optimization
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response. However, the parameter optimization response decays to
zero amplitude in 35 sec. as compared to 40 sec. for the steady
state minimax response. The performance difference between the
parameter optimization and steady state minimax solutions is linked
to the structure of the performance index for the parameter
optimization, which is discussed in the next section.

4.6.5 Comments on the Performance Index

The behavior of the optimization on the sample problem, and
also the space station application problems in Section 5,
highlights an implicit constraint imposed by the performance index,

Tp n

N, } = tr[ P ] (4-30)

J = E{ Eo

T _ T o T T 27T . . . .
=1 q q, & £~ 1. As discussed in Section 4.5, J is

o 20
an upper bound for the performance cost resulting from any one

where,

specific initial condition vector, say an impulse at a specific
location on the structure.
The Lyapunov matrix, P can be sectioned so that

B N
P I p
q E a¢
P= | -=-=- : ————— (4"31)
|
|
P {
| Fast e
Then,
J=E{ | EoT éoT 1By | g, | +1 éoT éoT ] P [ £ (4-32a)
% | %
+ (cross-~terms in qu) }
or,
J = tr] Pq ] + trl pg 1 =30, +J, (4-32Db)
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The component J1 of J represents the cost associated with a
disturbance applied directly to the structure. The component J2 of
J represents the cost associated with a disturbance applied to the
absorber masses. A disturbance applied to an absorber mass causes
absorber motion, and structural excitation. Even though the
absorber motion may not be penalized in the cost weighting matrix,
0O, the structural excitation will contribute to the perfomance cost
J2. This contribution to Js is significant relative to Jq when the
absorber disturbance excites natural modes of the
structure-absorber system which are significant components of the
structural response.

The energy transmission property of the absorbers may cause
mis-tuning, when the transmitted energy excites significant modes
of the structure. The removal of this implicit constraint on the
performance index, J, and the generalization of the tuning
algorithm presents an interesting topic for future study.

4.7 Uncoupled Dynamic Optimization vs. Parameter Optimization.

The uncoupled dynamic optimization formulation provides a
simple method of computation of the optimal parameters for several
absorbers, by tuning each absorber to a specific mode of vibration.
Embedded in the formulation (Sec. 3.6) is the computation of the
optimal mass distribution among the absorbers.

The major obstacle, however, which 1limits the use of the
uncoupled dynamic optimization technique on a multi-mode structure
with multiple absorbers is the cross-coupling between modes through
the absorbers; i.e., the control force of each absorber affects
more than one mode, and the displacement and velocity input to each
absorber includes more than one mode. The cross-coupling effect is
depicted in Fig 4-19, in which a two-mode FEM with two absorbers is
shown in control canonical form. Each absorber is assumed to be
tuned to one of the modes. The dash lined boxes isolate the 2
absorber-mode systems, while the double-line paths indicate the
cross-coupling ©between mode-absorber systems. The influence

coefficients, ¢& relate the modal amplitudes to physical

jl
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displacements and velocities, and also specify the influence on
each of the modes of an input at a physical location.

wWhen the cross-coupling influence coefficients are negligible,
the uncoupled dynamic optimization yields the optimal mass
distribution and a nearly optimal response. This is the basic
assumption of the uncoupled dynamic optimization technique. The
parameter optimization algorithm includes the effects of
cross-coupling to the extent allowed by the reduced order finite
element model.

A comparison of the uncoupled dynamic optimization and the
parameter optimization methods of computing the optimal absorber
parameters is performed in the next -section for several space

station application problems.
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SECTION 5
SPACE STATION APPLICATIONS

The optimization techniques described in the previous sections
are applied to example vibration damping problems on the NASA dual
keel configuration Space Station. Two example cases are considered,
which evaluate the capabilities of the uncoupled dynamic
optimization and the parameter optimization algorithms: (1) micro-g
acceleration response at the lab module, and (2) pointing response
at a location on the Earth-viewing (lower) payload boom. The
disturbance input for both <cases is a unit impulse at the
habitation module. The force input at this 1location simulates
either a shuttle docking, or crew motion disturbance, depending on
the strength of the impulse. The inherent structural damping is
assumed to be 0.5%.

In order to examine the performance of the optimization
techniques on multi-absorber problems, two absorbers are employed
in each of the example problems. The application of two absorbers
facilitates the interpretation and expression of the results using
two-dimensional plots, and simplifies the interpretation of the
dynamic interactions between structure and absorbers.

The results of the example cases provide insight into the
optimization techniques, and also quantify some of absorber design
parameters, such as spring constants, damper constants and absorber
strokes.

5.1 Space Station Finite Element Model

The Space Station finite element model (FEM) describes the
dynamics of the IOC version of the Space Station during the phase B
evolution as of January, 1986 (Fig. b5-la). The model is
characterized by a ©5M erectable truss in the dual keel
configuration with the modules placed above the transverse boom. It
should be noted that at this writing, a later version of the IOC
Space Station configuration has been developed which includes a
combination of solar voltaic and solar dynamic power generators on
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the transverse boom, and a slightly different module arrangement.
Consequently, the model used in the present study does not reflect
the latest space station configuration, and the cases studied
should be treated as examples only. For the same reason, the
construction of the FEM model is not presented in great detail.

The FEM model, shown in Fig. 5-2 without payloads and
servicing bays for clarity, employs equivalent beam
reperesentations of the 5M erectable truss. The EAL/SPAR finite
element code is used. Table 5~1 lists the properties of the model.

Dynamic analysis of the model vyields a large number of
free-free modes. Primary structural modes are selected by
examination of the modal component strain energy rankings and
animated mode shape displays. Fig. 5-2 shows side views of the
primary modes selected, from a perspective of looking down the
Y-axis.

5.2 The Acceleration Response Problem

The stringent micro-g level requirement on the accelerations
at the lab module is one of the design drivers which prompted the
configuration change from the power tower to the dual keel
configuration of the Space Station. The absorber optimization
algorithms are applied to minimize the transient lab module
acceleration response in the 2Z-direction (Fig. 5-1b). An arbitrary
value for the total absorber mass budget of 1 snail (386 1b.) is
assumed.

The spectral composition of the 1lab module acceleration
response is shown in Fig. 5-3. Modes 27, 28, 31 and 40 contribute
most significantly to the response. The actual open loop impulse
response is shown in Fig. 5-6a.

The two absorbers are located so that the influence of each
absorber on a particular mode is maximized (i.e., the absorber is
placed at a maximum of the mode shape). The location of the
absorbers is shown in Fig. 5-1b. The chosen locations allow both
absorbers to influence modes 28, 31, and 40 significantly.
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TABLE 5.1. CHARACTERISTICS OF 5M DUAL KEEL FEM MODEL

WEIGHT (LBS): 675,791

INERTIAS (SLUG-FT2):

IXX= 2.25E+08

IYY= 6.82E+07

I1Z2Z= 1.74E+08

5M ERECTABLE TRUSS

EI (LB-IN2): 5.0E+11
GJ (LB-IN2): 1.2E+11
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3

28
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27
0 1 1 | 1 1 | N I A i | 1
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

FREQUENCY (Hz)

MODES INCLUDED: MODE FREQUENCY (Hz)
27 0.4387
28 0.4618
29 0.5052
30 0.5175
i 0.5263
40 0.5656

Figure 5-3. Spectral Composition of Lab Module Z-acceleration Impulse
Response.
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The techniques described in Sec. 3.7 are employed to examine
the degree of coupling introduced through the absorbers for the
acceleration response problem. The Beff matrix exhibits a high
degree of spatial coupling, as indicated by the relative magnitudes
between the diagonal and non-diagonal elements, Fig. 5-4a. The net
effect of the spatial and frequency coupling is depicted in Fig.
5-4c, in which the off-diagonal elements of Beff are plotted
against the modal frequency ratio. The placement of the plotted
points for the acceleration response problem indicates that

cross-coupling effects are strong.
5.2.1 Uncoupled Dynamic Optimization Results

For the uncoupled dynamic optimization, an absorber is tuned
to each of the dominant modes, 28 and 31. The results of the mass
optimization (Egs. 3-37 through 3-40) are examined graphically in
Fig. 5-5, in which the cost J (area under the acceleration response
curve) is plotted as a function of the ratio of the absorber mass
on mode 28 to the modal mass of mode 28. The optimal mass ratio for
the absorber tuned to mode 28 is chosen at the minimum of the curve
(Fig. 5-5). The remainder of the 386 1lb mass budget is applied to
the absorber tuned to mode 31. The two curves in Fig 5-5 illustrate
the small error introduced when the area under the response curve
is computed by summation of the areas under the individual modal
responses, rather than computation of the area under the actual
response (modes combined) curve. Both curves have a minimum at
Bl = .03, which agrees with the wvalue obtained from numerical
solution techniques (Egq. 3-39). The corresponding value of BZ,
applied to mode 31, is 0.031.

Given the absorber mass ratios, the optimal absorber spring
and damper constants are computed using the classical steady state
tuning laws (Egs. 3-4 through 3-5e). The computed parameters are
listed in Table 5-2.

The acceleration response with the uncoupled dynamic
optimization solution is shown in Fig. 5-6c. The response curve
includes all the primary station modes listed in Fig. 5-3.
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Figure 5-4. Characterization of Net Effect of Absorber Spatial

and Frequency Coupling. The Values for the Pointing
Case (Diamonds) are Greater Than 126.0 and are Thus
0ff the Cost Chart (Uncoupled). The Values for the
Micro-Acceleration Case (Hexagons) Indicate a High
Degree of Coupling.
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SPRING DAMPER
ABSORBER ALGORITHM MASS CONSTANT CONSTANT
(LBS) (LB/IN) (LB/IN-SEC)
UNCOUPLED
OPT. 145 2.98 0.225
1
PARAMETER
OPT. 145 0.411 0.00224
UNCOUPLED
OPT. 241 6.43 0.431
2
PARAMETER
OPT. 241 5.01 1.019

Table 5-2. Absorber Parameters for Acceleration Response
Problem.
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5.2.2 Parameter Optimization Results

The parameter optimization algorithm is applied to a reduced
order finite element model of the dual keel space station, which
includes the primary vibration modes listed in Fig. 5-3. The cost
weighting matrix (Eg. 4-13) penalizes the acceleration response
only, in the 1lab module 2Z-direction. The dynamic optimization
solution (Sec. 5.2.1) provides the absorber masses, and the initial
guess for the absorber spring and damper constants.

The parameter optimization solution for the spring and damper
constants is listed in Table 5-2. The closed loop frequencies and
damping are depicted in Fig. 5-7, in which the frequency shift is
highlighted through comparison with the open loop frequencies. The
acceleration impulse response is plotted in Fig. 5-6b.

5.2.3 Acceleration Response Case - Discussion

The impulse response results obtained with the parameter
optimization and uncoupled dynamic optimization solutions for
absorber tuning show the significant amount of damping which can be
introduced into the structure by tuned-mass dampers (Figs. 5-6b and
c). Both solutions yield a good impulse transient response,
although the parameter optimization solution offers a slightly
better response than the uncoupled optimization solution.

The frequency content of the impulse responses, Figs. 5-6a, b,
and c, is obtained with Fast Fourier Transform (FFT) techniques.
The FFT of the impulse responses for the parameter and uncoupled
optimization solutions is compared to the open loop response FFT in
Fig. 5-8. Both solutions suppress the peak at 0.46 Hz. (near mode
28), but the uncoupled optimization introduces a significant peak
near 0.5 Hz which yields a significant contribution to the impulse
response.

The damping ratios for the parameter optimization solution are
listed in Fig. 5-7, which also illustrates the frequency shift
between the open and closed loop systems caused by the attachment
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DAMPING (%)

FREQUENCY (HZ)

AMPLITUDE

OPEN LOOP
MODES

0.28 0.50 12.93 10.38 0.62 0.50 4.75 3.97
0.166 0.439 0.444 0.471 0.506 0.518 0.530 0.552

T

- 27 28 29 30 31 40

Figure 5-7. Damping Ratios and Closed Loop Frequencies for Parameter
Optimization Solution.
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of the absorbers. Approximately 10% damping is introduced near
modes 27 and 28, and approximately 4% near modes 31 and 40.

An interesting feature shown in Fig. 5-7 is the relatively low
closed loop frequency at 0.166 Hz, with 0.28% damping - which is
less than the 0.5% inherent structural damping! Examination of the
absorber parameters for the parameter optimization solution, Table
5-2, reveals that absorber 1 is tuned to very small spring and
damper constants. Normally it is difficult to attribute closed loop
frequencies to absorbers and structure specifically. However, in
this case it is clear that the mode at 0.166 Hz is a direct result
of absorber 1, due to the small spring constant which leads to low
vibration frequency for the absorber, and the small damping
constant.

The parameter optimization algorithm effectively tunes
absorber 1 such that it does not affect the structure in the
frequency domain of interest (i.e. modes 28 to 40). This behavior
indicates possible interference between the absorbers which is
allowed by the cross-coupling between absorber locations.

Since absorber 1 is detuned, its allocated mass is inactive.
Therefore, it is reasonable to expect that better performance can
be obtained by shifting the inactive mass to absorber 2 which
provides all of the damping. However, additional test cases in
which the mass distribution among the absorbers is varied do not
lead to noticeable changes in the response, even when the total
mass budget is allocated to absorber 2. A plausible interpretation
of these results is that the total mass budget falls in a region
where the performance cost is insensitive to total absorber mass.
This idea is illustrated for a hypothetical problem in Fig. 5-9.

Further examination of the acceleration response problem with
a reduced mass budget (77.2 1lbs) verifies the aforementioned
hypothesis. Variation of the performance index, J, with the mass
distribution is shown in Fig. 5-10 for the reduced mass budget
problem. The minimum cost is obtained when all of the mass budget
is allocated to absorber 2. The parameter optimization algorithm
detunes absorber 1 for mass distributions of approximately 30 to
65%. Since the mass of absorber 1 in that region is inactive, the
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Figure 5-9. Hypothetical Curve of Performance Index vs. Total Absorber
Mass Budget.
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Acceleration Response Problem With Reduced Mass Budget.
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cost curve shows the sensitivity of performance cost to the
equivalent total absorber mass.

As the mass of absorber 1 increased to values greater than 65%
of the total mass budget, the absorber becomes more important and
absorber 2 is now gradually detuned. The performance cost decreases
as absorber 1 takes control, and absorber 2 becomes ineffective.
The performance cost of absorber 1 alone (at 100% in Fig 5-10) is
greater than the performance cost of absorber 2 alone (at 0% in Fig
5-10) because of the different locations of the absorbers.

The envelopes of the response curves for the cases of 0, 37,
60, and 100% mass for absorber 1 are compared in Fig. 5-11 for
physical evaluation of the performance cost differences depicted in
Fig 5-10.

5.3 Payload Pointing Problem

Payloads and experiments mounted on the upper and lower booms
may have stringent pointing requirements. To study the application
of absorbers to pointing problems involving primary structural
modes, the pitch rotation (rotation about the Y-axis) near the
center of the Earth-pointing payload boom (Fig. 5-1b) is chosen as
an example. Due to the large modal masses of the major system
modes, a total absorber mass budget of 6 snails (2316 1lbs.) is
assumed.

The spectral composition of the pitch response is shown in
Fig. 5-12. The corresponding open loop impulse response is shown in
Fig. 5-13a. The most significant contribution to the response is by
mode 25 at 0.2661 Hz. The next most significant mode is 31 with an
amplitude of 28% of that of mode 25.

The absorbers are placed at the maxima modes 25 and 31, Fig.
5-1b. Examination of the Beff matrix, Fig. 5-4b, for the chosen
absorber locations, reveals moderate spatial coupling. However, a
plot of the values of the off-diagonal terms of Beff’ Fig. 5-4c,
indicates that the frequencies are far enough apart to provide a
net coupling effect which is negligible (none of the points fit on
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the chart). Therefore, the pointing problem under analysis is a
good example of an uncoupled case.

5.3.1 Uncoupled Dynamic Optimization Results

For the uncoupled dynamic optimization, an absorber is tuned
to each of modes 25 and 31. Fig. 5-14 is a graphical representation
of the optimization defined by Eg. 3-37 through 3-40, in which the
cost J is plotted as a function of the mass ratio of the absorber
on mode 25. The remainder of the absorber mass budget is applied to
the absorber on mode 31. The error introduced by summation of the
areas under the separate modal responses is small. The mininmum
cost occurs at Bl = 0.0193, which correponds to BZ = 0.0045.

Given the absorber mass ratios, the spring and damper
constants are computed using the classical steady state tuning
laws. The results are listed in Table 5-3.

The pitch response caused by a unit impulse, with absorbers
tuned by the uncoupled dynamic optimization solution, is shown in
Fig. 5-13c. The response includes all the modes listed in Fig.
5-12.

5.3.2 Parameter Optimization Results

The parameter optimization algorithm is applied to the pitch
response problem, with the same absorber mass distribution and
locations as for the uncoupled dynamic optimization analysis. The
absorber masses, spring constants, and damper constants for the
parameter optimization solution are listed in Table 5-3. The closed
loop frequencies and damping ratios are shown in Fig. 5-15. The
corresponding transient response is shown in Fig. 5-13b.

5.3.3 Payload Pointing Problem - Discussion
The uncoupled dynamic optimization solution provides the best
transient response, as evidenced by comparison of Figs. 5-13b and

5-13c. The parameter optimization algorithm tuned absorber 1
succesfully to the high mode (mode 31), but tuned absorber 2
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Problem.
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SPRING DAMPER
ABSORBER | ALGORITHM MASS CONSTANT CONSTANT
(LBS) (LB/IN) (LB/IN-SEC)
UNCOUPLED
OPT. 2281 15.9 1.66
1
PARAMETER
OPT. 2281 14.1 3.98
UNCOUPLED
OPT. 35 0.994 0.0251
2
PARAMETER
OPT. 35 1.08 0.0625

Table 5-3. Absorber Parameters for Payload Pointing Problem.

112




.00003
00002

.00001

II1IEITTTTTTTI

UVVVUUM&MﬁuA

.....................................................................................................

"A(}(}()()l
-.00002

DISPLACEMENT (DEG)

wriverd

~.00003 ....i...L;lk..aL...:....:....E‘+L.;....i‘,..;A...
10 15 20 25 T H 36 40 45 60

TIME (SEC)

o
th

(2) OPEN LOOP RESPONSE

00002

A |

o :
8 .cooo1 f e
& oL :
5 ; :
M —.00001 ; {
B —00002 FN-esdinnendinenec b i H H i ¢
= - ; :
= —.00003 E- i ol . : S - H o d

Q 6 10 16 20 26 a0 a6 40 46 60

00002

.000a1

: : : A A A p A A o A 5
VNV AR AL
~.00001 J\Je --------- R H—— R N E— H—— ——

—.0000%

o
.;——""é:"-}
>
D

i
|
6
D |

i
N
b |
e
> |

) 2

LA

H H
. . : . . H
. * . . * AJ .
H H i . i H N
ooﬂoa PR EPES PP UPEE RSP S S Sl S S S T S ST U G V- S GEP U GV S S S PRSP S
s

(c) UNCOQUPLED DYRAMIC OPTINMZATICN SCLUTION

Figure 5-13. Transient Impulse Response; Payload Pointing Problem.

113



omﬁ.c

" () 49qdtosqy

Joy pasn si 99bpng ssepy J4aquosqy 3yj jo dduejeg Y|
(1) 49quosqy 404 Oljey SSep |epopy J9qJosqy BYg SNSJIIA
(3s0)) @Aun) asuodsoy quawdde|dsi(q |ej0] Japun eady

by
m_ﬂ.c 910°0 ¥10°0 c10 0 O_Jhc ocﬁ.c wcﬂ.c
1 1 1

"p1-§ @4nb14

¥00°0 2000 000°0

|

NOILNTOS 1DVX3 ¥O0d f LSOO O

AT1IVNAIAIGNI G3WWNS SIAOW ¥04  1S0D O

0°¢

g°'¢

0°s 0'F

9

0

f 1LS0D

101

114




AMPLITUDE

DAMPING (%) 19.7 2. 0.98 0.21 0.89 0.67 4.8
FREQUENCY (HZ) 0.240 0. 66 0.456 0.531 0.571 0.599 0.625

[

v
OPEN LOOP 1\ 1\ 1”\

MODES — ™ 25 28 31 40 41 47

Figure 5-15. Damping Ratios and Closed Loop Frequencies for the Parameter
Optimization Solution; Payload Pointing Problem.
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Figure 5-16. FFT of Transient Responses; Payload Pointing Problem.
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between modes 25 and 31. Consenquently, the damping achieved in
mode 25 is smaller than if the absorber was tuned to mode 25 alone,
as was done for the uncoupled optimization solution.

Further examination of the behavior of the parameter
optimization algorithm reveals that the contribution of the
absorber initial conditions to the performance index, as discussed
in Sec. 4.6.5, affects the location of the minimum. The cost, as
defined by Eq. (4-32b), associated with the response of Fig. 5-13c
is actually higher than the cost associated with the response
associated with Fig. 5-13b, even though the former response is
clearly better. However, comparison of the partial cost due to
structure initial conditions only (the first term in Eq. 4-32b) is
smaller for the response with the uncoupled optimization solution
than for the response with the parameter optimization solution.

The frequency content and relative amplitudes for the
responses of Figs. 5-13a, b, and c¢ is presented in Fig. 5-16 for
completeness.

5.4 Absorber Relative Motion

The optimization methods discussed and applied in the previous
sections yield absorber masses, and spring and damper constants
which reduce some response of a structure caused by an external
disturbance. The practical application of the results will raise
many hardware design problems, one of which is the absorber
relative motion. Large displacements may be impractical, and small
displacements and velocities may lead to 'binding' of the absorber.

Absorber displacements and velocities are presented in Figs.
5-17a and b for the tuned absorber of Sec. 5.2.2. The displacement
and velocity scales correspond to an impulse of 1 1b-sec.
Therefore, for a shuttle docking impulse of 500 lb-sec, a maximum
displacement of 0.6 in, and maximum velocity of 1.65 in/sec are
reached. For a crew motion disturbance of 25 lb-sec, the maximum
displacement and velocity are 0.03 in. and 0.0825 in/sec. The
maximum displacement and velocity values show that large relative
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motions do not present a design problem, but absorber binding may
occur at small displacements and velocities.

5.5 Space Station Applications Summary

The parameter optimization and uncoupled absorber optimization
methods are applied to example vibration damping problems on the
dual keel configuration space station. The example problems
considered are (1) the acceleration response at the lab module, and
(2) the pointing response at a location on the lower payload boom.
A generic disturbance impulse is applied at the location of the
shuttle berthing node. The impulse may simulate either shuttle
docking, or crew motion, depending on its magnitude. Two absorbers
are tuned to minimize the response in each case.

The parameter optimization and uncoupled optimization
solutions both result in satisfactory responses for the
acceleration response problem. A slightly better response is
obtained with the parameter optimization solution, since
cross-coupling effects are taken into account in the formulation of
the optimization algorithm.

Examination of the results for the acceleration response
reveals that that the total mass budget initially allocated for the
two absorbers (386 1lbs) falls in the saturation region of the cost
vs. total absorber mass curve, i.e., small variations in the total
mass budget do not detract from or improve the transient response
significantly. Additional test cases with a reduced mass budget
(77.2 1lbs) demonstrate increased sensitivity of the performance
cost to total mass budget.

Variation of the mass distribution among absorbers for both
the high and low total mass budget cases shows that the parameter
optimization algorithm actually tunes one of the absorbers so that
it does not affect the structure in the frequency domain of
interest. This is attributed to possible interference between the
absorbers through cross-coupling. For the low mass budget problem,

detuning switches from absorber 1 to absorber 2 as the mass of
absorber 1 is increased.
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The payload pointing response example offers a lightly coupled
problem. The uncoupled dynamic optimization solution yields a
better response than the parameter optimization solution. The
parameter optimization solution is restrained by the formulation of
the performance index, which penalizes structural excitation caused
by disturbances transmitted through the absorbers. The algorithm
effectively tunes an absorber away from parameters which would
allow energy transmission throught the absorber at significant
modes of the closed loop system. This behavior of the algorithm is
an interesting topic for further study.

The absorber relative displacement and velocity are examined
for the acceleration response case. Displacement and velocity
magnitudes for shuttle docking or crew motion are not large, but
may lead to absorber binding problems.
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SECTION 6
DESIGN PROCEDURES

Design procedures are developed from the analysis and results
of Sections 3, 4, and 5. The overall design process is considered
and a design procedure is presented. A flow diagram of the design
procedure is presented in Fig. 6-1. Each block of the diagram is
briefly described in the following paragraphs.

The major focus of this report 1is the development of
algorithms which compute the optimal absorber parameters for a
multi-degree-of-freedom system with several absorbers attached.
Additional design variables which are considered in the design are
absorber locations and total absorber mass budget. Further design
constraints result from hardware considerations. Although outside
the scope of this report, the hardware design considerations are
briefly discussed.

6.1 Vibration Problem Definition

The location and direction of the vibrations to be suppressed
are identified. The 'local' vibration problem is influenced by
disturbance sources and design requirements.

6.2 Critical Mode Selection

The natural modes of vibration which contribute to the
response at the selected locations are identified for the chosen
set of disturbance excitations. The relative amplitudes of the
various modes in the total response dictate which modes are
considered during absorber design.

6.3 Absorber Mass Budget Allocation
The major decision factor for the allocation of total absorber

mass concerns the magnitudes of the modal masses corresponding to
the modes of vibration to be damped. A mode with a large modal
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Figure 6-1. Absorber Design Procedure Block Diagram.
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mass requires a corresponding larger absorber mass for effective
damping than a mode with a smaller modal mass. The total mass
budget must be large enough to allow reasonable absorber to modal
mass ratios for all the absorbers and modes involved in the
problem.

The choice of absorber to modal mass ratio must be
sufficiently large to provide effective damping (for example, a 2%
ratio provides satisfactory closed loop response for the simple
2-DOF system, Sec. 3.3.3). On the opposite end of the scale, the
total absorber mass may be too large. In this case the quality of
the closed loop response 1is insensitive to changes in absorber
mass, and a smaller mass can be used (Sec 5.2).

6.4 Absorber Locations

The choice of absorber locations, and the number of absorbers
to be used must take into account the spatial coupling through
absorber locations, and frequency coupling in the vibration
problem. Some rules are:

(1) Place absorbers at a location of maximum amplitude of the
mode shape, so that a maximum absorber mass to modal mass
ratio is achieved. If absorbers are placed at a location
other than the maximum, Eg. (3-26) can be used to compute
the additional mass required to achieve the same mass
ratio.

(2) When significant absorber coupling (i.e., both spatial
and frequency) exists, use one absorber to damp the set
of modes coupled by the absorber. Addition of another
absorber may cause interference which degrades the
response.

6.5 Algorithm Selection
The algorithm selection is influenced by the spatial and

frequency coupling through the absorbers. The uncoupled dynamic
optimization offers superior results for lightly coupled problems,
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and the parameter optimization algorithm yields superior results
for strongly coupled problems.

6.6 Uncoupled Dynamic Optimization Algorithm

The uncoupled dynamic optimization algorithm is described in
Sec. 3.6. Given absorber 1locations, the algorithm yields the
optimal mass distribution among the absorbers, under the assumption
that no spatial coupling is introduced through the absorbers (Sec
4.7). Spring and damper constants for each absorber are computed
with the classical tuning laws for a 2-DOF system (Sec 3.2).

6.7 Parameter Optimization Algorithm

The parameter optimization algorithm (Sec 4.6) employs a
gradient search method (Quasi-Newton) to find optimal values for
the absorber spring and damper constants. The algorithm requires
that mass distribution among the absorbers be specified. The
initial guess for spring and damper constants may be obtained from
the results of the uncoupled dynamic optimization algorithm, or the
classical tuning laws for a specified absorber mass distribution.

The optimal mass distribution of the uncoupled dynamic
algorithm may also be used, but as demonstrated in Section 5.2 it
is not necessarily the best distribution for a strongly coupled
problem.

6.8 Absorber Spring and Damper Constants

The output parameters of the design procedure are the absorber
spring constants and damper strengths.

6.9 Hardware Design Issues
The final step of the design procedure is shown in Figure 6-1.

The consideration of the hardware design issues associated with
construction of an absorber with the chosen optimal parameters for
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k, ¢, m; the physical design of the absorber spring and damping
elements, 1s outside of the scope of this study. However, some
observations are noted here: Vibration absorbers can add passive
damping to a structure through a variety of mechanisms including
constrained layer treatments, friction devices, discrete viscous
dampers, electromagnetic devices, and fluidic devices. The
composite system of the spring and damper should have a net
stiffness of k and a net damper strength of c. Ideally, these
values would remain constant over the frequency, temperature, load,
displacement, and velocity ranges of the operational plant
structure.

Two conceptual design examples are shown in Figure 6-2.
Figure 6-2a depicts a large stroke, low frequency design which
contains a viscoelastic damping material sandwiched between two
plates. Figure 6-2b depicts a small displacement design where the
tuning mass 1is supported only by the viscoelastic material. In
this case, the viscoelastic material has both the proper stiffness,
k and damping strength, c.

Depending on the requirements of a specific application, the
design of the absorber may become highly constrained by hardware
issues. For example, viscoelastic materials typically have a loss
factor (damping strength) that depends on temperature and
frequency. For space applications, there are outgassing problems.
For low-stroke applications requiring a very low value of ¢, the
response of devices with moving parts may be dominated by friction
and/or stiction effects. A low modal mass, low frequency
application may dictate a spring stiffness which is too small to
fabricate. Other applications may require stroke 1lengths that
exceed the strain limit for the spring material. A trade study of
the various design options available must be conducted in light of
the requirements of a specific application. Fortunately, the
results of previous sections of this report indicate that
near-optimal absorber performance can be obtained in the presence
of small variations in the spring stiffness, and even larger

variations in the damper strength, especially for larger modal mass
ratios.
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For Space Station applications, the dynamics and the low
strain energy involved dictate a 1low frequency, 1low stroke,
space-qualified design. A possible choice would be a magnetic
device with no moving parts. Existing non-structural mass (i.e.,
the resource modules) on the Space Station could be used to reduce
the mass penalty. Ideally, the few absorbers required would be
designed with variable stiffness and damping elements so as to
permit optimal performance over a range of Space Station dynamic
characteristics (i.e., mode shapes) which vary with the distribution
of mass during the buildup to a Growth Station.

6.10 Remarks

The design procedure described in the previous paragraphs is
an iterative process formulated to interpret insight and visibility
into an essentially nonlinear process. The decomposition of the
process into several distinct stages allows the application of
linear analysis; however, the construction of the design procedure
highlights a number of topics which require further investigation.
Among these are: the optimization of the number and locations of
the absorbers, the incorporation of the absorber masses in the
parameter optimization algorithm, and the investigation of
tradeoffs between structural mass and absorber mass as means of
suppressing vibrations. Further development in these topics will
contribute to the refinement of the design procedure.
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SECTION 7

CONCLUDING REMARKS

The optimal tuning of multiple tuned-mass dampers for the
transient vibration damping of 1large space structures is
investigated. A multidisciplinary approach is used. Structural
dynamic techniques are applied to gain physical insight into
absorber/structure interaction and to optimize specific cases.
Modern control theory and parameter optimization technigques are
applied to the general optimization problem. A design procedure
for multi-absorber multi-DOF vibration damping problems 1is
presented.

The performance of vibration absorbers designed using
classical and other tuning laws is compared using one-mode dynamic
models. Based on these results, a performance criterion for the
optimal tuning of wvibration absorbers for transient response is
developed. Classical dynamic models are extended to investigate
the effects of absorber placement, existing structural damping, and
absorber cross-coupling on the optimal design synthesis. An
uncoupled dynamic optimization technique 1is developed which
allocates the absorber mass budget over multiple absorbers.

The control design process for the general optimization
problem is formulated as a linear output feedback control problem
via the development of a feedback control canonical form. The
design variables are expressed as control gains, and the analytical
techniques of feedback control theory, both classical and modern,
are applied to absorber design. Although active control algorithms
are used in the design process, the final remains passive; i.e., an
active system is not being designed. The constrained nature of the
feedback gain matrix makes the application of established output
feedback solution methods difficult; therefore, a nonlinear
parameter optimization method is developed and applied to an output
feedback formulation of the vibration damping problem.
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The complexity of the general optimization problem for
multiple vibration absorbers on multi-DOF space structures requires
its segmentation into smaller sub-problems. In the present design
procedure, the choice of absorber mass, absorber locations, and
absorber spring and damper constants are treated as sub-problems.
The optimal absorber locations are found to be at the maxima of the
eigenvectors of the modes which require damping. The total
absorber mass budget is assumed to be constrained by mission
requirements. System performance improves as the total absorber
mass budget is increased until a saturation point where the
addition of absorber mass provides little improvement in
performance. Given the total absorber mass budget, the mass
distribution among the absorbers is computed using the uncoupled
dynamic optimization for cases which involve minimal absorber
cross-coupling (i.e., each absorber affects only one mode and
vice-versa). For highly <coupled <cases, trade studies are
conducted. Finally, the optimal absorber spring and damper
constraints are computed for uncoupled systems using classical
tuning laws or computed for coupled systems by applying the
parameter optimization algorithm.

The uncoupled dynamic optimization and more general parameter
optimization algorithms are applied to two sample problems on the
NASA dual keel space station. They are the damping of
micro-accelerations in the 1lab module and the suppression of
payload pointing vibrations at the lower boom. Damping levels in
the range of 10% - 20% are achieved with two tuned-mass dampers.
For these Space Station examples passive dampers increased the
damping considerably. The absorber weight penalty associated with
the increased damping could be reduced by using existing attached
masses or payloads for absorbers.
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The potential damping performance gains obtained through the
use of tuned-mass dampers on lightly-damped structures merits the
further study of the hardware issues associated with these devices.
Further study is recommended to investigate the hardware issues and
to construct and test hardware concepts. Other recommendations
include the further development of constrained optimization
techniques and the optimization of combined passive and active
control for vibration suppression.
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